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Real life inverse problems




Considered general inverse problem

Log-likelihood Proposition
Mixture of noises Untractable Approx.
Forward model:
= expensive black-box - Model reduction
= Non-linear Non-concave MTM kernel
= Spans multiple decades | Non-grad-Lipschitz | P-MALA kernel
Uncertainty quantification - MCMC

Limitation: Sampler restricted to smooth log-posterior
because of P-MALA (see slide 9)
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Considered general inverse problem
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Observation model
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0 parameters to infer
fne black-box, spans multiple decades (element (n,¢))
“) ~JV(0,02) e.g., instruments noise
eiz’”f log A (0,02, e.g., calibration error

w>0 instrument detectability limit

How to deal with | black-box forward map f 7

mixture of additive and multiplicative noises?
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Addressing likelihood difficulties

How to deal with black-box forward map f?

= Model reduction

How to deal with mixture of additive and multiplicative noises?

— likelihood approximation with controlled error
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Deriving a new Likelihood (uncensored)

Approximated model
Moment matching

likelihood approx (1 elt)

Y=c"f(©) +e?

Additive approx
Y = f(©) + @
e ~ N (m,, s2)

7Dy, 010)

Multiplicative approx
Y= f(©)
e ~log N (m,,, s>,
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Deriving a new Likelihood (uncensored)
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with 1,,, = A(f,,¢(®)): | controls the mixing of the two approx

sigmoid parametrized by a, (location and speed)

7/12



Deriving a new Likelihood (uncensored)

AYnel®) o< 7D G0 e gy, @) e

with 1,,, = A(f,,¢(®)): | controls the mixing of the two approx

sigmoid parametrized by a, (location and speed)

To evaluate approx: Kolmogorov-Smirnov-based metric ¢(ay).
To get best approx:  Minimize ¢ with Bayesian Optimization (BO).
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A priori information

[RNXD

a priori information on @ € combines 2 priors:

m spatial regularization, e.g.,
m smoothed Total Variation
m I,-norm of image gradient
m L,-norm of image Laplacian
m L,-norm of image wavelet decomposition

m Validity domain for each physical parameter 6,, 4
= BUT non-smooth
= use smooth penalty function when 6,, ; is out of validity domain:
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Proposed sampler: two kernels:

m Forward model covers multiple decades
= non-grad.-Lipschitz log-posterior
Preconditioned-MALA kernel with RMSProp
Role: Efficient local exploration
Limitation: restricted to smooth log-posteriors

m Non-log-concave posterior
= potential multimodality
Multiple-Try Metropolis (MTM) kernel
Role: Jumps between modes
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Sampler: illustration on Gaussian mixture model
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Sampler: illustration on Gaussian mixture model

[ proposal distribution covariance
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Sampler: illustration on Gaussian mixture model
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Sampler: illustration on Gaussian mixture model




Sampler: illustration on Gaussian mixture model
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Sampler: illustration on Gaussian mixture model




Application to an astrophysics synthetic dataset

Synthetic observations Y € R%90%10; integrated intensities of excited lines of CO
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Conclusion

Log-likelihood Proposition
Mixture of noises Untractable Approx.
Forward model:
= Black-box expensive Model reduction
= Non-linear Non-concave MTM kernel
= Spans multiple decades | Non-grad-Lipschitz | P-MALA kernel

Applications v Astrophysics synthetic yet realistic dataset
= OrionB data and JWST obs. (perspective)
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