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The Galaxy volume

Solar systems fill ∼ 3 ·10−10 of the volume of the galaxy

Most of the galaxy: empty!

Most of the galaxy: Interstellar Medium!
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Observations of GMC: Orion B in visible frequencies

Figure: Image from Pety et al. [2016]
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Observations of GMC: Orion B in visible frequencies

Figure: Image from Pety et al. [2016]
blue: 12CO, green: 13CO, red: C18O
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Photo-Dissociation Region (PDR)

Figure: Structure of a PDR
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Photo-Dissociation Region (PDR)

Figure: Structure of a PDR
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Meudon PDR code: numerical simulation of a PDR

Introduced in Le Petit et al. [2006].
for stationary 1D slab of gas, solves:

1 radiative transfer
2 chemistry
3 thermal balance

that are all coupled!

physical params
x ∈ RN×D

Meudon PDR
f

Line Intensities
y ∈ RN×L

Can we infer x from y and f ?
no ground truth → with credibility intervals
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Current state of the art in astrophysics

Figure: MLE maps inference
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Bayesian map inversion

inference with credibility interval
⇓

a posteriori probability distribution P
[
x | y

]

P
[
x | y

]︸ ︷︷ ︸
a posteriori

∝ P
[

y | x
]︸ ︷︷ ︸

likelihood

× P [x]︸︷︷︸
a priori

Complex distribution
=⇒ impossible to manipulate as is

=⇒ sampling with MCMC
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Observation model

∀n,`, yn,` = max
{
ω, ε(m)

n,` f`(xn)+ε(a)
n,`

}
with

ε(a)
n,` : additive noise (thermal, instruments)

ε(m)
n,` : multiplicative noise (calibration error)
ω : minimum detectable value by telescope

Figure: f` for some lines `, for 1 pixel
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Including a priori information

a priori information on x:

spatial regularization: L2 penalty on image Laplacian

f`: estimated from a grid
→ constraint of belonging to a cube (convex enveloppe of grid)
"non smooth prior "but can be tempered with a smooth penalty
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Sampler

smooth prior + smooth likelihood =⇒ smooth posterior
classic MCMC algorithm (e.g., MALA) OK

smooth prior + smooth likelihood =⇒ smooth posterior
classic MCMC algorithm (e.g., MALA) OK because of two difficulties

f and ∇ f cover various decades
=⇒ classic methods inefficient
X Preconditioned MALA kernel with RMSProp

non-convex negative log-posterior (because of Meudon PDR code)
=⇒ need to avoid being trapped in local minima
X Multiple-Try Metropolis (MTM) kernel

Final sampler : random combination of these two kernels



9/16

Sampler

smooth prior + smooth likelihood =⇒ smooth posterior
classic MCMC algorithm (e.g., MALA) OK because of two difficulties

f and ∇ f cover various decades
=⇒ classic methods inefficient
X Preconditioned MALA kernel with RMSProp

non-convex negative log-posterior (because of Meudon PDR code)
=⇒ need to avoid being trapped in local minima
X Multiple-Try Metropolis (MTM) kernel

Final sampler : random combination of these two kernels



9/16

Sampler

smooth prior + smooth likelihood =⇒ smooth posterior
classic MCMC algorithm (e.g., MALA) OK because of two difficulties

f and ∇ f cover various decades
=⇒ classic methods inefficient

X Preconditioned MALA kernel with RMSProp

non-convex negative log-posterior (because of Meudon PDR code)
=⇒ need to avoid being trapped in local minima
X Multiple-Try Metropolis (MTM) kernel

Final sampler : random combination of these two kernels



9/16

Sampler

smooth prior + smooth likelihood =⇒ smooth posterior
classic MCMC algorithm (e.g., MALA) OK because of two difficulties

f and ∇ f cover various decades
=⇒ classic methods inefficient

X Preconditioned MALA kernel with RMSProp

non-convex negative log-posterior (because of Meudon PDR code)
=⇒ need to avoid being trapped in local minima

X Multiple-Try Metropolis (MTM) kernel

Final sampler : random combination of these two kernels



9/16

Sampler

smooth prior + smooth likelihood =⇒ smooth posterior
classic MCMC algorithm (e.g., MALA) OK because of two difficulties

f and ∇ f cover various decades
=⇒ classic methods inefficient
X Preconditioned MALA kernel with RMSProp

non-convex negative log-posterior (because of Meudon PDR code)
=⇒ need to avoid being trapped in local minima
X Multiple-Try Metropolis (MTM) kernel

Final sampler : random combination of these two kernels



9/16

Sampler

smooth prior + smooth likelihood =⇒ smooth posterior
classic MCMC algorithm (e.g., MALA) OK because of two difficulties

f and ∇ f cover various decades
=⇒ classic methods inefficient
X Preconditioned MALA kernel with RMSProp

non-convex negative log-posterior (because of Meudon PDR code)
=⇒ need to avoid being trapped in local minima
X Multiple-Try Metropolis (MTM) kernel

Final sampler : random combination of these two kernels



10/16

Illustration: Gaussian Mixture in a square

Illustration that our algorithm explores interesting local minima :
mixture of 20 gaussians
with constraint x ∈ [−10,10]× [−10,10]
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Toy case 1: Time Series Inversion

yn,` = ε(m)
n,` f (xn)+ε(a)

n,` with f : x ∈R 7→ ex , σa = 1, σm ∼ 10%

Table: Estimation Summary

estimator MSE SNR
MMSE 3.6 28.8
MLE 10.5 24.1
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Astrophysical Toy case: Map Inversion
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Application to NGC 7023 (1 pixel)

Figure: from Joblin et al. [2018]



14/16

Application to NGC 7023 (1 pixel)
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Summary

Definition of a MCMC sampler with
1 P-MALA kernel to tackle regularity issues
2 MTM kernel to tackle the non-log-concavity of the posterior

Evaluation of the method on toy data

Application to real world data
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Thank you for your attention!
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